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Abstract—This paper proposes a method to efficiently allocate
tasks to appropriate agents by forming teams based on the
reciprocity in distributed environments where communication
delay is not ignorable. Recent applications on a variety of devices
such as PCs, tablets, and smartphones run in different locations
to provide location-oriented and time-constrained services. These
services are usually realized by agents on these devices com-
municating with single or multiple service agents operating on
servers that are also deployed at multiple points. Because timely
response is a key factor for quality of services, communication
delay is significant in these applications. Thus, we propose a
method in which agents allocate tasks in such a widely distributed
environment to reduce the delay of response to the requested
tasks by extending our previous work. Then, we experimentally
show that our method could improve the overall performance by
identifying which agents have high-throughput of task execution
from the local viewpoint.

Index Terms—distributed task allocation, cooperative agents,
reciprocity, reinforcement learning,

I. INTRODUCTION

Recent applications operate in cooperation with a variety
of mobile devices such as PCs, tablets, and smartphones with
network connectivity at different geographical locations and
provide location-oriented and time-constrained services [1],
[2]. These services are usually realized by a combination of
multiple specialized tasks done by a collaboration of agents,
which are control programs running on these devices and on
servers in the Internet. Because timely response of services is
always a key factor for quality of service (QoS), these tasks
should be allocated to agents that can do the specialized tasks
in a timely manner.

However, it is not easy to allocate tasks to appropriate agents
because the number of agents is quite large and they are
designed by different developers and run on different servers in
widely distributed places. For example, in fog computing [2],
[3], many network devices for mobile devices are deployed
near the user side and have limited resources and processing
power. Thus, although the number of agents is restricted due
to the limited processing resources, some agents reside on
and use the resources of these devices to provide a for timely
response by reducing the communication delay for location-
oriented and real-time services. Therefore, how to allocate
tasks to geographically distributed agents is an important issue
for this type of network application.

In the multi-agent system literature, this kind of task allo-
cation problem is often formalized using a general framework
called the team formation in which a team (or task-oriented
coalition) is a set of cooperative agents that have their own
capabilities and that achieve the shared goal by doing the
assigned jobs [4], [5]. A service in our domain is modeled
by the execution of the corresponding task, which consists of
a number of specialized subtasks that require certain capabil-
ities; thus, they are allocated to the appropriate members in
the team to be executed.

Along this line, Hayano et al. [6] proposed the efficient team
formation methods for a large number of agents operating
in a busy distributed environment. It proposed a method
where agents autonomously identify which other agents they
should work with on the basis of reciprocity that reflects
the past interaction experience, and they form an implicit
alliance structure in which agents preferentially form teams.
Although this method can achieve an effective team formation
process, its model does not include geographically distributed
environments where delay of communications between agents
is not ignorable.

Thus, we extend the previous model to include communi-
cation delay so that our extended model reflects how to select
appropriate member agents to form a team in the distributed
environment. Because the delay in communications between
agents affects the performance, the selection of an agent that
is highly capable but distant or one that is close but has
relatively low processing power is difficult. We also analyze
the experimental results to see whether our method can achieve
efficient allocation and investigate whether reciprocal behavior
can improve it.

II. RELATED WORK

Because team formation is a fundamental problem in multi-
agent systems, it is used to model many types of applications
that require collaboration by forming teams. For example,
Bakker and Klenke [9] proposed a distributed task allocation
algorithm in multi-agent contexts for collaboration for the
set of unmanned aircraft systems. Pujol-Gonzalez et al. [8]
discussed the inter-team coordination method using the max-
sum algorithm and applied it to form teams of agents for
urban rescue operations in the RoboCup Rescue Simulation



challenge. There are also many applications using team for-
mation in multi-agent systems in which agents are human
(such as crowdsourcing [10], education [11], and social net-
work analysis [12]) ) or are networked pieces of equipment
(such as telecommunication network facilities [13] and sensor
devices [14]).

Of course, team formation is applied to allocating tasks in
distributed computer systems. Liemhetcharat and Veloso [7]
introduced the concept of the synergy graph into multi-agent
teams and proposed a team formation method using the learned
synergy graph. Jiang et al. [15] proposed a notable task
allocation model based on a negotiation reputation mechanism
on the given agent networks that may contain deceptive agents.
Although we assume that there are cooperative (so trustwor-
thy) agents in our model, agents often encounter situations
where they have to select actions that are unwanted for some
collaborators due to unavoidable conflicts, but they must still
keep the cooperative relationships. Hayano et al. [16] proposed
a team formation in a distributed environment with a large
number of agents in which multiple agents simultaneously
attempt to form teams over time. Then, they extended their
model to improve the success rate of team formation by
switching between the rational and reciprocal strategies [6].
However, they ignored the communication delay that nega-
tively affected the efficiency of team formation.

III. PROBLEM DESCRIPTION

A. Agent, Task, and Communication Delay

Let A = {1, . . . , n} be the set of agents. Agent ∀i ∈ A has
the associated capabilities, Ci = (c1i , . . . , c

p
i ), where cki ≥ 0

is a real number and p is the number of capability types.
cki = 0 indicates that i does not have the k-th capability.
We define p(i) = #{k | cki > 0}. We also introduce the
distance between agents dist(i, j) and the required time (we
assume a discrete time) for message sending. This is defined
by L(i, j) = ⌈dist(i, j)/D⌉ (seconds, the time unit used in
this paper), where D is the positive constant called the delay
factor. Note that L(i, j) > 0 if i ̸= j.

For workload λ > 0, λ tasks on average are added to the tail
of the system queue, Q, every second. A task, T = (ST , UT ),
consists of a set of subtasks, ST = {s1, . . . , slT }, and the
utility UT ≥ 0. Task T is completed when all subtasks in ST

are completed. The subtask, sj , has the required capabilities,
(r1sj , . . . , r

p
sj ), where rksj ≥ 0 is the k-th capability required

to perform sj . If ∃k s.t. rksj > 0 and cki = 0, i cannot perform
sj ; otherwise, i can perform sj , and its execution time is

Ei(sj) = max
1≤k≤p

⌈rksj/c
k
i ⌉, (1)

where if rksj = 0 and cki = 0, rksj/c
k
i is defined as zero. For

simplicity, we assume 1 ≤ ∃!ko ≤ p, rk0
sj > 0, and rksj = 0 for

k ̸= k0. We assume that an agent can do only one subtask at
one time. Thus, a task should be done by a team, which is a
temporarily formed set of agents with the required capabilities.
When T is completed, the associated utility, UT , is given. It

is assumed to be proportional to the amount of the required
capabilities, UT =

∑
s∈ST

us, where us =
∑p

k=1 r
k
s .

B. Task Allocation in Agent Team

The team for task T is (GT , σT ), where σT is the one-to-
one map from ST onto GT , and thereby σ−1

T : GT −→ ST

can canonically be defined. GT (⊂ A) is the set of agents that
execute the subtasks assigned by σT . There are two types of
agents, leaders (or managers) and members. A leader is an
initiator of a team that attempts to collect the members and
allocate subtasks to them. A member is an executor of the
allocated subtask.

Agent i is in either an inactive or active state. i in the active
state is involved in forming a team or executing a subtask;
otherwise it is inactive. An inactive leader first picks up task
T from the head of Q and becomes active. If i can find no
task, it stays inactive for a second. It selects one subtask s′ ∈
ST to do by itself if possible. Then, it internally selects Nd

possible member agents for each ∀s ∈ S′
T = ST \{s′}, where

Nd > 0 is an integer called the solicitation redundancy. How
the member agents are selected is an important part of our
proposed strategy and will be discussed in Section IV. The
set of i and the selected agents with the allocated subtasks is
called the pre-team, Gpre

T . Agent i then sends the agents in
Gpre

T solicitation messages (SMs) with the subtasks that will
be allocated to ask them to join the team to work with leader
agent i, and then i waits for the responses. Note that any
message arrives at the destination agent j in L(i, j) seconds.

Leader i forms the team (GT , σT ) for T when it receives
at least one acceptance for ∀s ∈ S′

T , where GT is the set of
agent i and the agents to which subtasks in S′

T are allocated.
The assignment σT : ST −→ GT is defined on the basis
of the acceptances, which will be explained in Section IV.
Leader i notifies the members in GT \ {i} of the successful
team formation and sends regret messages to the agents that
accepted the SMs but are allocated no subtasks. Agents in GT

execute the allocated subtasks. When subtask s′ allocated to
itself (leader i) is completed, it returns to the inactive state.
While i can move on to another new task, it also receives the
completion messages for the end of all subtasks. Thus, the
leader manages which agents are still working. We define the
execution time of T by GT by

EGT (T ) = max
s∈ST

(Ei
ldr (σT (s), s))

where Ei
ldr (j, s) = Ej(s) + 2L(i, j). After all subtasks

have been completed, the members in GT will receive utility
according to the allocated subtasks.

On the other hand, if no agent accepts the solicitation for
a certain subtask in S′

T , the team formation fails; thereby, i
discards T and notifies the agents in Gpre

T of the failure. Then,
i returns to the inactive state.

An inactive member agent j first checks the received SMs
every second. If no messages arrive, it does nothing in this
second. Otherwise, using the strategy for selection that is
explained in Section IV, j selects one message and enters the



active state. Then, j sends an acceptance message to leader i,
who is the sender of the selected SM, and sends the rejection
messages to the other leaders. Then, j waits for a response
from i. If j receives a regret message, it returns to the inactive
state; otherwise, j joins the team and executes the allocated
subtask. When j has completed the subtask, it notifies i of its
completion, leaves the team, and returns to the inactive state.

Note that Nd ≥ 2 means that the leader agent i selects
pre-team members redundantly to avoid a situation where no
agents accept a certain subtask. Thus, a larger Nd increases the
success rate of team formation but may restrain some agents
redundantly and increase communication cost.

IV. PROPOSED METHOD

A. Learning Team Agents via Past Collaboration

Our learning method is based on that proposed in Hayano
et al. [6], but we found that just adding it with the model of
communication delay did not work well. Thus, the proposed
method is considerably revised it.

We introduce the learning parameter of degree of depend-
ability (DE), where dependability is the reliability of another
agent’s decisions for cooperative behavior; thus, agents attempt
to work with dependable agents again to increase the success
rate of team formation. To decide the dependable agents, agent
i has DE parameters 0 ≤ dij whose initial value is 0.5 for
∀j(̸= i) ∈ A. The DE is used differently depending on the
types of agents. Leader agent i, update the value of dij by

dij = (1− αd) · dij + αd · δLd (GT , j), (2)

where δLd (GT , j) = 0 if j rejects the SM, and δLd (GT , j) =
uσ−1(j)/E

i
ldr (j, σ

−1(j)) if the current team can be formed.
0 ≤ αd ≤ 1 is the learning rate for the DE parameter.

A member j also updates dji depending on leader i’s reply
to j’s acceptance message:

dji = (1− αd) · dji + αd · δMd (s), (3)

where δMd (s) = us/(2L(i, j) + Ej(s)) and s is the task
allocated by i. However, if GT cannot be formed or j is not
included in GT , δMd (s) = 0. Note that 2L(i, j)+Ej(s) is the
binding time as a member of the current team.

The DE of i is gradually reduced every time to adapt to the
environmental changes by

dij = max(dij − ν, 0) for ∀j( ̸= i) ∈ A (4)

every second, where ν is a small positive number.
Dependable agents j ∈ Di are defined as the set of the

first XF agents by sorting according to the descending order
of DE values and j ≥ T i

D, where T i
D is a threshold number

and XF > 0 is a positive integer. When Di ̸= ∅, i enters the
reciprocal mode and change the behavior to keep the current
dependability relationship. Note that, from Formula (3), the
DE indicates the distance and the extent to which the capabil-
ities of members are effectively used. Since member agent j
knows its own capability, we set T j

D = T j
M,D×

∑
c∈Cj

c/p(j)
so that it is proportional to the average of their capabilities.

TABLE I
PARAMETER VALUES USED IN EXPERIMENTS.

.

Description Parameter and value
Types of capabilities p = 3
Workload λ = 2.5 to 10
Queue length |Q| = 500
Number of redundant messages Nd = 2
Learning rate for DE αd = 0.01
Reduction value ν = 2.0× 10−6

Threshold of dependability in leaders TL,D = 1.5
Threshold of dependability in members TM,D = 0.5
Greedy value in the ε-greedy strategy ε = 0.05

On the other hand, the leader’s performance is mainly decided
by the capabilities of its members, which is unforeseeable, so
we define T i

D as a positive constant TL,D.

B. Reciprocal Behavior and Strategies for Leader/Member
selections

Agent i using our proposed method behaves as follows. It
looks for collaborative agents in a rational manner at first,
i.e., leader agent i selects member agents according to which
agents will likely accept the SMs and will bring more utility
per second. Member j selects the SMs according to which
leader will put j into GT with a higher probability and bring
a higher utility per second. By definition, these decision are
made using the DE values in both cases.

Member agent j in the reciprocal mode selects only the SM
that is sent from the leader in Di and ignores other messages.
If j received multiple SMs from dependable agents, it selects
the SM sent from leader whose DE value is the highest. This
behavior seems non-rational from the viewpoint of pursuing
utility because j might be able to receive some utility from
non-dependable leaders. However, if j accepted it, it might
not be able to accept a SM from a dependable agent arriving
during the execution. Because dependability is the result of
past consecutive instances of mutual cooperative behavior,
by giving priority to dependable agents, we can enhance the
reciprocal structure.

When leader agent i selects the members of the pre-team, it
first chooses from Di and then from A \ Di based on the DE
values (with the ε-greedy strategy) as follows. Initially, i sets
Gpre

T = ∅ and sorts A′ = A \ {i} by descending order of DE
values, and S̃T = S′

T . S̃T is also sorted by descending order
of its utility us. Agent i selects the first element s in S̃T and
search member j from the top of A′ that can execute the task.
Then, (j, s) is added to Gpre

T . If j ∈ D, i removes s from S̃.
i iterates this selection for S′

T . If Nd = 1, the current Gpre
T is

the pre-team.
If Nd > 1, the same process repeats another Nd − 1 times.

Note that since the subtasks allocated to dependable agents
are removed from S̃T , they are allocated to only one agent
by relying on their reciprocal behavior. Note that all agents
also adopt the ε-greedy strategy when selecting SMs and the
members of a pre-team.



V. EXPERIMENTAL EVALUATION AND DISCUSSION

A. Experimental Setting

We experimentally evaluated our method by investigating
the numbers of successfully formed teams and comparing them
with those of the model based on the traditional contract net
protocol (CNP) [17] and those of rational agents who only
pursue the values of utility per second. Leaders of the rational
agents in this experiment attempt to increase the success rate
of forming teams; thus, they learn which member agents are
likely to accept the solicitation of joining teams. For this
purpose, they have the parameters, like the DE, whose values
are updated using Formula 2, but δLd (GT , j) = 1 if j accepted
the SM, and δLd (GT , j) = 0 if j did not. On the other
hand, members (contractors) try to maximize the utility per
second; thus, they also use Formula (3), but it is updated by
δMd (s) = us/E

j(s). They do not have the reciprocal mode. In
the CNP-based protocol, the leaders (managers) announce all
subtasks to the nearest one hundred members. Then, members
bid (s,Ej(s)), where s is the subtask whose utility per second
us/E

j(s) is the largest. The leader selects the best members.
|AL| = 100 and |AM | = 400, and these agents are placed on

the 50×50 grid environment randomly. We use the Manhattan
distance between agents. For ∀i ∈ A, its capability cki ∈ Ci

is set to a non-negative integer randomly selected from [0, 5],
and if p(i) = 0, i’s capabilities are redefined. Task, T , consists
of three to six subtasks, sj ∈ ST , each of which has only one
positively required capability rk0

sj > 0 whose value is also
set randomly between five and ten. Other parameters used in
the proposed method are listed in Table I. The upper limit of
dependable agents is XF = 1 for member agents and XF =
∞ for leaders. The experimental results shown below are the
average of 20 independent experimental runs with different
random seeds.

B. Performance Comparison

Figure 1 shows the number of completed tasks, which
is identical to that of successfully formed teams, per 100
seconds, when λ = 2.5 (system is under low workload),
λ = 5 (moderate workload), and λ = 7.5 (a few tasks have
overflowed). We also plotted the average communication time
(one-way), L(i, j), and the average execution time of subtasks,
Ei(s), when λ = 5.0 in Fig. 2. Note that we did not indicate
on the graphs when λ is other values because these values
were quite similar to those of Fig. 2.

First, we cannot see the obvious difference in the number of
proposed agents and rational agents when λ = 2.5 from Fig. 1
(a). However, in other cases, the agents using the proposed
method outperformed the rational agents. Particularly, when
the agents were rational, the number of complete tasks hit
the ceiling, which was approximately four hundred per 100
seconds as shown in Fig. 1 (b) and (c). In an environment
where all agents are rational, leader agents pursue improving
the success rate, and members focus on the earned utility; thus,
they can increased the number of completed tasks. However,
because they do not care about the communication delay as

shown in Fig. 2(a), they could execute only a limited number
of tasks. On the other hand, the agents using the proposed
method could decrease both communication time (Fig. 2(a))
and execution time (Fig. 2(b)) over time; thus, they could
complete more tasks than rational agents.

The CNP agents exhibited relatively low performance in all
cases, although the average values of communication delay and
execution time are much better than those of other agents (see
Fig. 2 (a) and (b)). We think that this is caused by conflicts
in selecting messages in members and possible members in
leaders. Even when the range of communication was restricted
(so the communication time was relatively small), the same
announcement messages were received by multiple members.
If they had a similar capability structure, they selected the
same member and made bids to the corresponding leaders.
Any leaders can select only the best agents (so the execution
time was very small) for each subtask, and other members
could not join the team. This lowered the success rate of team
formation.

C. Remarks

Figure 1 also indicates that a number of tasks could not
be executed due to the failures of team formation, even when
λ was not large. Because agents use the ε-greedy strategy, it
is probable that they select members/a leader randomly with
the probability of ε, and they are likely to fail when forming
teams. In addition, because the environment is the grid plane,
the agents near corners and fringes had fewer close leaders and
member agents, so they could not fully exert their capabilities.
To improve the success rate in real applications, tasks that
could not be executed were returned to the system’s queue.
However, we did not do this in our experiment because we
want to know the pure success rate of team formation.

In our experiment, we fixed the number of leaders to 100,
but this number may change depending on the structure of
tasks. Hayano et al. [6] proposed autonomous role selection so
that they can adaptively decide their role: leaders or members.
However, we could not add this decision to our current model.
We also define a number of threshold parameters. Therefore,
we plan to identify their values based on their contribution to
task execution; these issues will be addressed in our future
work.

VI. CONCLUSION

Recent applications cooperate with a variety of mobile de-
vices network connectivity at a variety of locations to provide
location-oriented and real-time services. These services are
usually realized by a combination of different programs with
specialized capabilities/functionalities for the required tasks.
In networking environments, cooperation between agents is
always affected by the time required for communication.
This paper proposes a method to efficiently allocate tasks to
appropriate agents by forming teams based on the reciprocity
in the distributed environments where communication delay is
not ignorable for timely services. The proposed method was
experimentally evaluated and found to have good performance
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by selecting local agents and/or distant agents with high
capabilities for their collaboration. We plan to learn the values
of parameters/thresholds used in our model so that they can be
used in a wide range of services in networked and distributed
environments.
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